在2023世界人工智能大会上,人们观看华为云盘古气象大模型。新华社记者 王翔摄
在科技展会上,人工智能技术总是很吸睛。新华社记者 张建松摄
盐碱地上的高标准农田 新华社记者 杨世尧摄
国家自然科学基金委员会2月29日发布2023年度“中国科学十大进展”。本年度“中国科学十大进展”主要分布在生命科学和医学、人工智能、量子、天文、化学能源等领域,分别为:人工智能大模型为精准天气预报带来新突破、揭示人类基因组暗物质驱动衰老的机制、发现大脑“有形”生物钟的存在及其节律调控机制、农作物耐盐碱机制解析及应用、新方法实现单碱基到超大片段DNA精准操纵、揭示人类细胞DNA复制起始新机制、“拉索”发现史上最亮伽马暴的极窄喷流和十万亿电子伏特光子、玻色编码纠错延长量子比特寿命、揭示光感受调节血糖代谢机制、发现锂硫电池界面电荷存储聚集反应新机制。
此项年度评选活动自2005年启动以来,已成功举办19届。2023年度“中国科学十大进展”是由相关学科领域专家先从600多项科学研究成果中遴选出30项成果,在此基础上评选出的10项重大科学研究成果。
① 人工智能大模型为精准天气预报带来新突破
天气预报是国家重大战略需求,也是国际科学前沿问题。20世纪后半叶,气象学家们建立起基于大气动力学的偏微分方程系统,并利用超级计算机进行数值模拟,进而预测未来天气。过去10年间,这类方法遇到不小的瓶颈,主要体现在两个方面:一是精度提升较慢,二是算力消耗极大。
华为云计算技术有限公司田奇团队在天气预报领域取得新突破。基于人工智能方法,他们构建了一个三维深度神经网络模型,称为盘古气象大模型。其主要技术贡献有三个方面:一是采用三维神经网络结构,更好地建模复杂的气象过程;二是采用地球位置编码技术,提升训练过程的精度和效率;三是训练具有不同预测时效的多个模型,减少迭代误差、节约推理时间。
盘古气象大模型在某些气象要素的预报精度上超越了传统数值方法,且推理效率提高了上万倍。在全球高分辨率再分析数据上,盘古气象大模型在温度、气压、湿度、风速等重要天气要素上,都取得了更准确的预测结果,将全球最先进的欧洲气象中心集成预报系统的预报时效提高了0.6天左右。
盘古气象大模型还可用于极端天气预报。在2018年的88个命名台风上,盘古气象大模型对于台风眼位置的3天和5天预测的绝对误差,比欧洲气象中心的预报系统降低了25%以上。在2023年汛期,盘古气象大模型成功预测了杜苏芮、苏拉等影响我国的强台风路径。
这项工作有助于我国构建自主可控的天气预报体系,在社会生产、人民生活、防灾减灾等方面具有重要意义。
② 揭示人类基因组暗物质驱动衰老的机制
人类基因组,被誉为生命的“密码本”,不仅控制着我们的身体机能,还与健康和疾病紧密相连。在这个复杂的遗传蓝图中,“暗物质”——非编码序列占据了惊人的98%,其中有约8%是内源性逆转录病毒元件,它是数百万年前古病毒入侵并整合到人类基因组中的残留物,通常情况下处于沉默状态。然而,随着年龄的增长,这些沉睡的古病毒“化石”的封印是否会被揭开,进而加速我们身体的衰老进程尚不可知。
针对这一问题,中国科学院动物研究所刘光慧研究员带领研究团队,通过搭建生理性和病理性衰老研究体系,结合高通量、高灵敏性和多维度的多学科交叉技术,揭示在衰老过程中,表观遗传“封印”的松动将导致原本沉寂的古病毒元件被重新激活,并进一步驱动衰老的“程序化”和“传染性”。一方面,衰老细胞中的古病毒反转录产物可通过激活天然免疫通路继而引发细胞衰老和慢性炎症;另一方面,衰老细胞释放的病毒颗粒可在细胞间传递衰老信号,让被“感染”的年轻细胞加速衰老。进一步,研究人员针对古病毒生命周期的不同阶段,开发了可有效抑制古病毒“复活”及清除古病毒颗粒的方法,从而延缓甚至逆转了细胞、器官乃至机体的衰老进程。
这项工作提出了古病毒的“复活”驱动衰老及相关疾病的新理论,为理解衰老的内在机制和发展衰老干预策略提供了新依据,为科学评估和预警衰老、防治衰老相关疾病以及积极应对人口老龄化提供新思路。
③ 发现大脑“有形”生物钟的存在及其节律调控机制
昼夜节律,俗称生物钟,是生物为了适应地球自转产生的昼夜更替而形成的一种节律性的生命活动规律。这种规律普遍存在于人类、动物、植物甚至是微生物体内。生物钟的准确性和稳定性与健康息息相关。节律如果发生失常,可引起睡眠障碍、代谢紊乱、免疫力下降,严重时可导致肿瘤、糖尿病、精神异常等重大疾病的发生。随着社会竞争和工作压力与日俱增,全球大约1/3的人存在节律紊乱问题,表现为睡眠障碍等症状。由于缺乏对生物节律调节机制的认识,当前国际上尚未能研究出基于生物节律的有效治疗药物。
大脑的视交叉上核(SCN)是生物钟的指挥中枢,协调外周器官的生物钟,调控多种生理功能,包括免疫力、体温、血压、食欲等。然而,SCN如何维持机体内部节律稳定性,从而抵御外界环境的干扰,尚不清楚。
军事医学研究院/南湖实验室李慧艳研究员和张学敏研究员通过合作研究发现了大脑“有形”生物钟的存在。他们发现大脑生物钟中枢SCN神经元长有“天线”样的初级纤毛,每24小时伸缩一次,如同生物钟的指针,通过它可实现对机体生物钟的调控。
大脑SCN区域具有大约2万个神经元。神奇的是,这2万个神经元始终保持着“同频共振”,维系着生物钟的稳定性,但机理始终是个谜团。他们发现初级纤毛可能通过调控SCN区神经元的“同频共振”调节节律,其机制与Shh信号通路密切相关。
这一“有形”生物钟的发现,对于理解生物钟的构造以及分子层面与细胞层面生物钟的联系具有重要意义,为节律调控新药研发开辟了新的路径。
④ 农作物耐盐碱机制解析及应用
我国有15亿亩盐碱地未被有效利用,通过培育耐盐碱农作物,可提高盐渍化土地产能,将为我国粮食安全提供有效保障。盐渍化土地分为中性盐地(富含氯化钠和硫酸钠,约占40%)和苏打盐碱地(富含碳酸钠和碳酸氢钠,约占60%)。尽管学术界对于植物耐盐性有较深入认知,但对植物耐碱胁迫的认识严重不足,这阻碍了耐盐碱作物的培育。中国科学院遗传与发育生物学研究所谢旗领衔的8家单位科研团队联合攻关,在粮食作物耐盐碱领域取得重要突破。
通过对耐盐碱差异大的高粱资源全基因组大数据进行关联分析,发现一个主效耐碱相关基因AT1,编码G蛋白亚基。该研究不仅揭示了经典细胞信号通路中“明星”蛋白的新功能,还率先揭示了真核生物水通道蛋白可在盐碱胁迫下外排过氧化氢,从而缓解碱胁迫对植物的危害。不同的AT1基因突变型在调控这一过程中发挥决定作用,为作物耐碱理论研究提供了新视角。研究还发现在水稻、玉米及小作物谷子等主要粮食作物中AT1调控机制也是类似的,为主要作物的耐盐碱分子育种奠定了理论基础。
在宁夏平罗盐碱地进行的田间实验表明,AT1基因的利用能够使高粱籽粒产量和全株生物量增加。AT1基因还可用于改善主要禾本科作物水稻、小麦、小米和玉米等的耐盐碱性。
⑤ 新方法实现单碱基到超大片段DNA精准操纵
基因组编辑是生命科学领域的颠覆性技术,将对医疗和农业等领域的发展产生重要影响。但是,精准基因组编辑技术的底层专利目前被国外垄断,我国亟待创制具有自主产权的新技术;另外,大片段DNA的精准操纵技术研发刚刚起步,它将是全球基因组编辑技术竞争的制高点。
面向“大片段DNA精准操纵”的世界科技前沿和“关键生物技术自主可控”的国家重大需求,中国科学院遗传与发育生物学研究所高彩霞团队与北京齐禾生科生物科技有限公司的赵天萌团队合作,利用新方法开发了新型碱基编辑器。他们首次运用人工智能辅助的结构预测建立了蛋白聚类新方法,率先将基于结构分类的理念引入工具酶挖掘领域,并基于此开发了系列具有重要应用价值的新型碱基编辑器和我国完全拥有自主产权的、首个在细胞核和细胞器中均可实现精准碱基编辑的新型工具CyDENT。
研究团队开发了首个植物大片段DNA精准定点插入技术。他们通过结合引导编辑和重组酶系统,首次在植物中实现了10Kb以上大片段DNA的精准定点插入,突破了植物大尺度DNA精准操纵的技术瓶颈,为高效作物育种和植物合成生物学奠定了技术基础。研究团队还利用基因组编辑实现了作物性状的精准调控。他们通过从头设计或延长基因上游开放阅读框,开发了精细下调蛋白表达的新方法和新体系,实现了对作物性状的精细微调。该成果有望进一步拓宽基因组编辑的育种应用,助力作物种质创新。
他们实现了基因组编辑在方法建立、技术研发和工具应用的多层次创新。
⑥ 揭示人类细胞DNA复制起始新机制
人体大约有30万亿个细胞,都由一个微小的受精卵细胞经过无数次细胞分裂产生。
所有这些细胞的DNA遗传信息都是完全相同的。DNA是遗传信息的“携带者”。每次细胞分裂时,它都要被准确复制。
DNA复制过程受到严格的控制。复制是从染色体上多个地方开始,这些地方被称为复制起始位点。
这个过程分两步:一是在起始点上组装微小染色体维持蛋白(MCM)双六聚体;二是激活MCM双六聚体,成为复制体,启动复制。如果这个过程出现问题,会导致严重的疾病,比如癌症、早衰和侏儒症等。
为了深入了解人体细胞DNA复制是如何开始的,该项工作解析了人体内的MCM双六聚体复合物的冷冻电镜结构。
在这个结构中,复制起点DNA,被固定在MCM的中央通道里,形成一个初始开口结构。形成该结构,DNA双链需要被拉伸和解开。
这为进一步复制做好准备,在激活MCM过程中,DNA会被进一步打开,就像打开了一本书。然后,形成复制体,它们会沿着DNA模板进行复制,就像用复印机复印文件一样。
这个研究还发现,如果初始的开口结构被破坏,那么所有的MCM-DH就无法稳定地结合在DNA上,导致DNA复制完全被抑制,就像是复印机坏了,无法开始复印文件一样。
这一发现,对癌症治疗有重要的应用价值。因为癌症细胞在生长过程中必须进行DNA复制。在不影响正常细胞运作的情况下,通过阻止癌细胞在DNA上组装MCM双六聚体是一种全新的、有效的、非常精准的抗癌疗法,将为抗癌药物的研发开辟了新的道路。
⑦ “拉索”发现史上最亮伽马暴的极窄喷流和十万亿电子伏特光子
伽马射线暴(简称伽马暴)是天空中突然发生的短暂伽马射线爆发现象。北京时间2022年10月9日,费米卫星记录到天空中的一个伽马暴(命名为GRB 221009A)。其巨大的伽马射线流量导致了多个卫星的探测能力饱和,是人类历史上已知的最亮的伽马暴。GRB 221009A起源于24亿光年外的大质量恒星死亡瞬间。恒星核心燃烧殆尽,坍缩为一个黑洞,并产生以接近光速往外运动的相对论喷流。
近些年,一些望远镜发现了伽马暴在万亿电子伏特能段随时间下降的余辉,但早期起始阶段一直未被探测到。“拉索”首次记录了伽马暴万亿电子伏特光子爆发的全过程,探测到早期的上升阶段,由此推断喷流具有极高的相对论洛伦兹因子。“拉索”还看到了GRB 221009A的余辉在700秒左右出现了快速下降,这一光变拐折现象被认为是观测者看到了喷流的边缘所致。从光变拐折的时间得到喷流的半张角仅有0.8度。这是迄今发现最窄的伽马暴喷流,意味着它实际上是一个典型结构化喷流的核心。正是由于观测者碰巧正对喷流最明亮的核心,自然地解释了为什么这个伽马暴是史上最亮的。
“拉索”还精确测量了高能伽马射线的能谱,呈现单一的幂律,延伸至十万亿电子伏特以上。这是伽马暴观测到的迄今最高能量的光子。
“拉索”的观测没有发现能谱变软现象,这对伽马暴余辉标准模型提出了挑战,意味着十万亿电子伏特光子可能产生于更复杂的粒子加速过程或者存在新的辐射机制。
⑧ 玻色编码纠错延长量子比特寿命
量子计算机利用量子相干和量子纠缠等量子资源,从理论上讲,具有超越经典计算机的算力。但量子计算受噪声干扰,容易出现量子退相干,错误率比经典计算机至少要高十多个量级。要解决这个问题,就必须进行量子纠错,通过量子编码使得一个被保护的逻辑量子比特的相干寿命超过量子电路中最好的物理比特的相干寿命。当这种情况出现的时候,我们说这种纠错过程超越了量子纠缠的盈亏平衡点。超越盈亏平衡点是构建逻辑量子比特的必要条件。
但是,由于量子态具有不可克隆性,量子计算机无法像经典计算机一样通过备份来纠正错误,量子纠错过程,本身也会引入新的错误,造成误差的累积,甚至出现越纠越错的局面,这就是量子纠错所面临的挑战,也是量子计算面临的关键性技术挑战之一。
南方科技大学和深圳国际量子研究院的俞大鹏院士以及徐源带领的研究团队,联合福州大学郑仕标、清华大学孙麓岩等团队基于玻色编码量子纠错方案,解决了量子纠缠过程中出现的大量技术问题,并开发了基于频率梳控制的低错误率的宇称探测技术,大幅延长逻辑量子比特的相干寿命,超越盈亏平衡点达16%,实现了量子纠错增益。
该成果展示了玻色编码在容错量子计算中的潜力,是通往容错量子计算道路上的一项重要成果。
⑨ 揭示光感受调节血糖代谢机制
光是生命产生的原动力,也是生命体最重要的感知觉输入之一。光不仅提供给我们视觉图像感知,还调节着诸如节律、睡眠、情绪等一系列生理病理过程。国内外多项公共卫生调查研究显示夜间过多光暴露显著增加罹患糖尿病、肥胖等代谢疾病风险。然而,光是否以及如何调节机体的血糖代谢,是尚未解决的重要科学问题。
中国科学技术大学薛天研究团队发现光暴露显著降低小鼠的血糖代谢能力。哺乳动物感光主要依赖于视网膜上的视锥、视杆细胞和对蓝光敏感的自感光神经节细胞(ipRGC)。利用基因工程手段,研究人员发现光降低血糖代谢由ipRGC感光独立介导。进一步研究发现光信号经由视网膜ipRGC,至下丘脑视上核、室旁核,进而到达脑干孤束核和中缝苍白核,最后通过交感神经连接到外周棕色脂肪组织。研究人员最终确定了光降低血糖代谢的原因,是光经由这条通路抑制棕色脂肪组织消耗血糖的产热。进一步研究表明,光同样可利用该机制降低人体的血糖代谢能力。
这项研究发现了全新的“眼—脑—外周棕色脂肪”通路,回答了长久以来未知的光调节血糖代谢的生物学机理,拓展了光感受调控生命过程的新功能。
⑩ 发现锂硫电池界面电荷存储聚集反应新机制
锂硫电池具有极高的能量密度(2600 Wh kg-1)和较低的成本,然而,锂硫电池的广泛应用还未能实现,因为它在充放电过程中,电池性能会快速下降。受限于传统原位显微研究技术的时空分辨率低及锂硫体系不稳定等因素,人们对其内部发生的化学反应过程尚不清楚,无法针对性解决问题,严重阻碍其应用。
厦门大学廖洪钢、孙世刚和北京化工大学陈建峰等开发高分辨电化学原位透射电镜技术,耦合真实电解液环境和外加电场,实现对锂硫电池界面反应原子尺度动态实时观测和研究。研究发现电池活性材料表面分子聚集成为分子团进行反应,电荷转移可以首先存储在聚集分子团中,分子团得到电子但不会发生转化,直到获得足够电子后瞬时结晶转化。而没有活性的材料表面遵循经典的单分子反应途径,多硫化锂分子逐步得到电子,分步转化,最后转化为Li2S。模拟计算表明,活性中心与多硫化锂之间的静电作用促进了Li+和多硫分子的聚集,并证实分子聚集体中的电荷可以自由转移。
近百年来,电化学界面反应通常被认为仅存在“内球反应”和“外球反应”单分子途径。该研究揭示出电化学界面反应存在第三种“电荷存储聚集反应”机制,为下一代锂硫电池设计提供指导。
更多精彩内容,请下载科普中国客户端。
(责编:邢郑、吴昊)